通用范例/范例二: Concatenating multiple feature extraction methods
http://scikit-learn.org/stable/auto_examples/feature_stacker.html
在许多实际应用中,会有很多方法可以从一个数据集中提取特征。也常常会组合多个方法来获得良好的特征。这个例子说明如何使用FeatureUnion
来结合由PCA
和univariate selection
时的特征。
这个范例的主要目的:
- 资料集:iris 鸢尾花资料集
- 特征:鸢尾花特征
- 预测目标:是那一种鸢尾花
- 机器学习方法:SVM 支持向量机
- 探讨重点:特征结合
- 关键函式:
sklearn.pipeline.FeatureUnion
(一)资料汇入及描述
- 首先先汇入iris 鸢尾花资料集,使用from sklearn.datasets import load_iris将资料存入
- 准备X (特征资料) 以及 y (目标资料)
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
iris = load_iris()
X, y = iris.data, iris.target
测试资料:
iris
为一个dict型别资料。
显示 | 说明 |
---|---|
('target_names', (3L,)) | 共有三种鸢尾花 setosa, versicolor, virginica |
('data', (150L, 4L)) | 有150笔资料,共四种特征 |
('target', (150L,)) | 这150笔资料各是那一种鸢尾花 |
DESCR | 资料之描述 |
feature_names | 4个特征代表的意义 |
(二)PCA与SelectKBest
PCA(n_components = 主要成份数量)
:Principal Component Analysis(PCA)主成份分析,是一个常用的将资料维度减少的方法。它的原理是找出一个新的座标轴,将资料投影到该轴时,数据的变异量会最大。利用这个方式减少资料维度,又希望能保留住原数据点的特性。SelectKBest(score_func , k )
:score_func
是选择特征值所依据的函式,而K
值则是设定要选出多少特征。
# This dataset is way to high-dimensional. Better do PCA:
pca = PCA(n_components=2)
# Maybe some original features where good, too?
selection = SelectKBest(k=1)
(三)FeatureUnionc
- 使用sklearn.pipeline.FeatureUnion合併主成分分析(PCA)和综合筛选(SelectKBest)。
- 最后得到选出的特征
# Build estimator from PCA and Univariate selection:
combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])
# Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)
(四)找到最佳的结果
Scikit-learn的支持向量机分类函式库利用 SVC() 建立运算物件,之后并可以用运算物件内的方法 .fit() 与 .predict() 来做训练与预测。
使用
GridSearchCV
交叉验证,得到由参数网格计算出的分数网格,并找到分数网格中最佳点。最后显示这个点所代表的参数
svm = SVC(kernel="linear")
# Do grid search over k, n_components and C:
pipeline = Pipeline([("features", combined_features), ("svm", svm)])
param_grid = dict(features__pca__n_components=[1, 2, 3],
features__univ_select__k=[1, 2],
svm__C=[0.1, 1, 10])
grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)
结果显示 ``` Fitting 3 folds for each of 18 candidates, totalling 54 fits [CV] featuresuniv_selectk=1, featurespcan_components=1, svmC=0.1 [CV] featuresuniv_selectk=1, featurespcan_components=1, svmC=0.1, score=0.960784 - 0.0s
## (五)完整程式码
Python source code: feature_stacker.py
http://scikit-learn.org/stable/auto_examples/feature_stacker.html
```python
# Author: Andreas Mueller <[email protected]>
#
# License: BSD 3 clause
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
iris = load_iris()
X, y = iris.data, iris.target
# This dataset is way to high-dimensional. Better do PCA:
pca = PCA(n_components=2)
# Maybe some original features where good, too?
selection = SelectKBest(k=1)
# Build estimator from PCA and Univariate selection:
combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])
# Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)
svm = SVC(kernel="linear")
# Do grid search over k, n_components and C:
pipeline = Pipeline([("features", combined_features), ("svm", svm)])
param_grid = dict(features__pca__n_components=[1, 2, 3],
features__univ_select__k=[1, 2],
svm__C=[0.1, 1, 10])
grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)